Odpowiedź :
[tex]\frac{W(x)}{P(x)}=\frac{(x^2 + 10x + 25)\cdot F(x)}{x^2 + 4x -5}\\\\\frac{W(x)}{P(x)}=\frac{(x+5)^2\cdot F(x)}{x^2 + 5x-x -5}\\\\\frac{W(x)}{P(x)}=\frac{(x+5)^2\cdot F(x)}{x(x+5)-(x+5)}\\\\\frac{W(x)}{P(x)}=\frac{(x+5)^2\cdot F(x)}{x^2 + 5x-x -5}\\\\\frac{W(x)}{P(x)}=\frac{(x+5)^2\cdot F(x)}{(x+5)(x-1)}\\\\\frac{W(x)}{P(x)}=\frac{(x+5)\cdot F(x)}{x-1}\\\\F(x)=x-1[/tex]