Zapisz w postaci jednej potęgi.

a)
[tex] \frac{ {2}^{10} }{ {2}^{5} \times {2}^{2} } = \frac{ {2}^{10} }{ {2}^{7} } = {2}^{3} [/tex]
b)
[tex] \frac{ {7}^{15} }{ {7}^{8} \times {7}^{2} } = \frac{ {7}^{15} }{ {7}^{10} } = {7}^{5} [/tex]
c)
[tex] \frac{ {5}^{12} }{ {5}^{7} \times {5}^{1} } = \frac{ {5}^{12} }{ {5}^{8} } = {5}^{4} [/tex]
d)
[tex] \frac{ {2}^{6} \times {2}^{3} }{ {2}^{9} } = \frac{ {2}^{9} }{ {2}^{9} } = {2}^{0} = 1[/tex]
e)
[tex] \frac{ {6}^{7} \times {6}^{3} }{ {6}^{2} } = \frac{ {6}^{10} }{ {6}^{2} } = {6}^{8} [/tex]
f)
[tex] \frac{ {3}^{12} \times {3}^{1} }{ {3}^{9} } = \frac{ {3}^{13} }{ {3}^{9} } = {3}^{4} [/tex]
g)
[tex] \frac{ {4}^{3} \times {4}^{5} }{ {4}^{8} } = \frac{ {4}^{8} }{ {4}^{8} } = {4}^{0} = 1[/tex]
Odpowiedź:
[tex]a)\ \ \dfrac{2^1^0}{2^5\cdot2^2}=\dfrac{2^1^0}{2^{5+2}}=\dfrac{2^1^0}{2^7}=2^{10-7}=2^3\\\\\\b)\ \ \dfrac{7^1^5}{7^8\cdot7^2}=\dfrac{7^1^5}{7^{8+2}}=\dfrac{7^1^5}{7^1^0}=7^{15-10}=7^5\\\\\\c)\ \ \dfrac{5^1^2}{5^7\cdot5}=\dfrac{5^1^2}{5^{7+1}}=\dfrac{5^1^2}{5^8}=5^{12-8}=5^4\\\\\\d)\ \ \dfrac{2^6\cdot2^3}{2^9}=\dfrac{2^{6+3}}{2^9}=\dfrac{2^9}{2^9}=2^{9-9}=2^0[/tex]
[tex]e)\ \ \dfrac{6^7\cdot6^3}{6^2}=\dfrac{6^{7+3}}{6^2}=\dfrac{6^1^0}{6^2}=6^{10-2}=6^8\\\\\\f)\ \ \dfrac{3^1^2\cdot3}{3^9}=\dfrac{3^{12+1}}{3^9}=\dfrac{3^1^3}{3^9}=3^{13-9}=3^4\\\\\\g)\ \ \dfrac{4^3\cdot4^5}{4^8}=\dfrac{4^{3+5}}{4^8}=\dfrac{4^8}{4^8}=4^{8-8}=4^0[/tex]