Oblicz opór zastępczy oporników


przykład 1
Łączymy szeregowo:
R12=R1+R2=1+1=2
R34=R3+R4=1+1=2
Łączymy równolegle:
[tex]r1234 = \frac{r12 \times r34}{r12 + r34} = \frac{2 \times 2}{2 + 2} = \frac{4}{4} = 1[/tex]
Łączymy szeregowo:
r1234+r5=1+1=2
Rz=2 omy
przykład 2:
[tex]r12 = \frac{r1 \times r2}{r1 + r2} = \frac{2 \times 2}{2 + 2} = \frac{4}{4} = 1[/tex]
[tex]r123 = \frac{r12 \times r3}{r12 + r3} = \frac{1 \times 2}{1 + 2} = \frac{2}{3} [/tex]
r12345=r123+r4+r5=
[tex]2 + 2 + \frac{2}{3} = 4 \frac{2}{3} [/tex]
Rz=r12345+r6= 6 i 2/3 oma
Przyklad 3
R123=r1+r2+r3=1+1+1=3
r45=r4+r5=1+1=2
[tex]r12345 = \frac{r123 \times r45}{r123 + r45} = \frac{2 \times 3}{2 + 3} = \frac{6}{5} [/tex]
[tex]r67 = \frac{r6 \times r7}{r6 + r7} = \frac{1 \times 1}{1 + 1} = \frac{1}{2} [/tex]
r678=r67+r8= 1 i 1/2
[tex]rz = \frac{r12345 \times r678}{r12345 + r678} = \frac{5}{3} [/tex]