Odpowiedź :
Rozwiązanie :
[tex]\sin\alpha\longrightarrow\frac{15}{17}\\\\\tan\alpha\longrightarrow\frac{15}{8}\\\\\cot\alpha\longrightarrow\frac{8}{15}[/tex]
Obliczenia :
[tex]\cos\alpha=\frac{8}{17}\\\\\sin^2\alpha+\cos^2\alpha=1\\\\\sin^2\alpha+(\frac{8}{17})^2=1\\\\\sin^2\alpha+\frac{64}{289}=1 \ \ |-\frac{64}{289}\\\\\sin^2\alpha=\frac{225}{289}\\\\\sin\alpha=\frac{15}{17}\\\\\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{15}{17}}{\frac{8}{17}}=\frac{15}{17}\cdot\frac{17}{8}=\frac{15}{8}\\\\\cot\alpha=\frac{1}{\tan\alpha}=\frac{1}{\frac{15}{8}}=\frac{8}{15}[/tex]