Trzeba użyć twierdzenia Pitagorasa
poziom 1
[tex]a)\\2^{2} +5^{2} =x^{2} \\x=\sqrt[2]{29} \\b)\\x^{2}+1^{2} =2^{2} \\x=\sqrt[2]{3} \\c)\\x^{2}+2^{2} =5^{2} \\x=\sqrt[2]{21} \\d)\\7^{2}+3^{2} =x^{2} \\x=\sqrt[2]{58}\\e)\\1^{2}+2^{2} =x^{2} \\x=\sqrt[2]{5}\\f)\\x^{2}+2^{2} =9^{2} \\x=\sqrt[2]{77}\\[/tex]
poziom 2
[tex]a)\\2^{2} +(\sqrt{21})^{2} =x^{2} \\x=\sqrt{25}=5 \\b)\\(\sqrt{3})^{2}+x^{2} =(\sqrt{5})^{2} \\x=\sqrt{2} \\c)\\x^{2}+(2\sqrt{5})^{2} =(\sqrt{21})^{2} \\x=\sqrt{1}=1 \\d)\\(\sqrt{8})^{2}+3^{2} =x^{2} \\x=\sqrt{17}\\e)\\ (2\sqrt{3})^{2}+2^{2} =x^{2}\\x=\sqrt{16}=4\\f)\\(3\sqrt{5})^{2}+x^{2} =7^{2} \\x=\sqrt{4}=2\\[/tex]